Thanks for downloading this product!

I strive to create high quality and ready-to-go resources to help teachers save time and deliver an engaging curriculum. If this resource meets your needs, please consider leaving feedback for this product. In return, you will get credits for use at any TPT store.

ISSUES: If you have any issues with this product, please email me at anti.tang@gmail.com so that I can make it right for you.

Copyright © August 2015 by Anh-Thi Tang
All rights are reserved by the author.

TERMS OF USE: This is not a commercial product and the purchase of this product only permits you individual personal classroom use. This entire product, or any parts within, may not be electronically distributed or posted to any website including teacher or classroom blogs.
NOTE: I have provided the article with and without questions. Included is also options for optimized single-sided or double-sided printing. Choose which one you prefer.

• For **Single-Sided** Article Printing with Questions Print pages #4 & 5
• For **Single-Sided** Article Printing without Questions Print pages #4 & 6
• For **Double-Sided** Article Printing with Questions Print pages #4 & 7
• For **Double-Sided** Article Printing without Questions Print pages #4 & 8
• **Suggestions for Implementation** are on Page # 3
• **Answer Key** is on Page # 9

**The Articles:** I love using articles to help support classroom resources, however, it is often a challenge to find good articles that engage students as well as ones written in a language that they can understand. Online sources are sometimes risky because the links to them may fail in the future. Formatting online articles to print is also sometimes a challenge and can waste a lot of paper. Text books usually have case studies that are too short to be useful.

Due to these types of frustrations, I have written a collection of engaging science reading articles to help make no-prep articles ready at your disposal. They are also great for sub plans. Please enjoy!
SUGGESTIONS FOR IMPLEMENTATION

Science Classroom Uses

All Grades:

1) Sub plan – no prep printable; easy to assign and collect.
2) In school suspension plan – have something ready for these difficult days
3) Independent work for early finishers – always have a set of printable articles with questions handy.
4) No prep extra credit assignment – easy to assign and mark.
5) Warm up at the beginning of class – start your day with science literacy
6) Assign at the beginning of the week and take up at the end of the week – get a reading routine going.
7) Assign as homework and take up next day.

Younger Grades: (Gr. 7-10)

1) Read along with the class or with student volunteer readers. Give time for students to work on answers individually or in small groups. Take up answers after. (30-45 minutes)

Older Grades: (Gr. 11 & 12)

1) Individual warmup work at the beginning of the class. Take up answers at the end of the warm up period or at the end of class. (15-25 minutes in class)
2) Individual warmup work at the beginning of the class. Assign questions for homework and take up the next morning. (10-15 minutes in class)

ELA Classroom Uses

Use the article as a non-fiction informational text for close reading. Questions have been provided but you can choose to include your own reflection questions for more in-depth analysis.
(1) Henrietta Lacks was an African American woman born on August 1st 1920 in Virginia. In 1951, while pregnant with her fifth child, she was diagnosed with cervical cancer at Johns Hopkins Hospital, which was the only hospital in her area that would treat black patients. She underwent radiation therapy for the cancer and during this time, two samples of the tumor were removed. Unfortunately, the treatment failed and she died on October 4th 1951, nine months after being diagnosed. Though Henrietta Lacks has now been dead for over six decades, her cells still live on and have proved to be one of the most important tools used in medical science.

(2) The cell samples taken from Henrietta Lacks were given to a researcher named George Gey. Gey had been trying to grow cells in culture, meaning grow them outside of the body in a nutrient-filled container, for years. None of the cells he had been working with could survive for longer than a few days before dying. Henrietta Lacks’ tumor cells were different and when grown in culture they continued to divide without dying. George Gey called these “immortal” cells HeLa cells after the woman they came from. Remarkably, these HeLa cells have continued to divide, up to this day, long after George Gey himself died in 1970.

(3) Normally cells divide 40-70 times before they hit their maximum ability to divide. This is called the Hayflick limit which is named after Leonard Hayflick who first researched this phenomenon. After the Hayflick limit is reached, a cell tops dividing and goes into senescence, or “cellular old age” until it dies.

(4) The Hayflick limit exists because of telomeres at either ends of a DNA strand. Telomeres are sections of DNA that don’t code for genetic traits. During cell division, DNA is replicated but the telomeres aren’t fully replicated, therefore new DNA has slightly shorter telomeres than the previous DNA. As a cell continues dividing, the telomeres become shorter and shorter until they reach the part of the DNA which contains code for genetic traits. When this happens, any further shortening of the DNA can be harmful. This is when the cell stops dividing and goes into senescence; the Hayflick limit has been reached.

(5) An enzyme called telomerase is able to reverse the process of telomere shortening. Telomerase does this by building short sections of DNA and then adding them onto the ends of the telomeres to prevent them from shortening during cell division. Embryonic cells make a lot of telomerase, allowing them to divide rapidly and go beyond the Hayflick limit. In adults, however, telomerase is not found in most cells with the exception of those that need to divide rapidly, like male germ cells that produce sperm or adult stem cells that make blood cells. Some cancer cells also produce a lot of telomerase which allows them to divide beyond the Hayflick limit and possibly divide forever. HeLa cells produce a lot of telomerase allowing them to divide indefinitely (meaning without end) and this is why Henrietta Lacks’ cells are called “immortal cells”.

(6) Due to their immortal nature, HeLa cells were in huge demand by medical researchers around the world. They wanted to use the cells to test the effects of different medicines and chemicals on human cells. In 1954, Jonas Salk was able to successfully develop and test the polio vaccine using HeLa cells. HeLa cells have now been used for research into treatments and cures for cancer, AIDS, and many other diseases. They are even used to test the sensitivity of human cells to certain chemicals in cosmetics and cleaners as well as radiation and toxins that come into contact with the human body. To this date, over 18 000 kg of Henrietta Lacks’ cells have been grown in culture for research, though Henrietta Lacks herself probably weighed no more than 60kg. A small sample of HeLa cell culture will cost anywhere from $100 to $250 USD.
Though HeLa cells are useful, they can also be tricky to use. Since they grow so well in culture and are immortal, they can easily contaminate non-HeLa cell cultures. Contamination of other cells by HeLa cells is a widely acknowledged problem and it has led to some research being invalidated once the contamination was discovered.

HeLa cells were the first cells to be successfully cultured. George Gey freely donated these cells and the information needed to culture the cells to any scientist who asked for them. He saw the benefits for medical research and for humanity. Though they have been extremely useful there is a controversy around the use of HeLa cells. Henrietta Lacks never gave permission to have her cells collected or used in this way. In 1951, it wasn’t customary to acquire permission from patients to harvest their cells. Even now harvested cells or body parts obtained from surgical procedures remain the property of the physician or hospital. The case of HeLa cells has raised a lot of ethical issues. Many individuals and corporations have become rich from creating different strains of HeLa cells and selling them, while the descendants of Henrietta Lacks are not provided with any financial compensation.

Article Questions

1) What was George Gey trying to accomplish with his research?

2) What makes HeLa cells different from other cells?

3) What is the Hayflick limit?

4) What happens when a cell reaches senescence?

5) What are telomeres and what happens to them during DNA replication?

6) Why does the presence of telomerase allow a cell to divide beyond the Hayflick limit?

7) Name three things that have been developed or tested using HeLa cells?

8) What is one concern about using HeLa cells in research labs?

9) What is one ethical problem with how HeLa cells have been obtained and used over the last few decades?
(7) Though HeLa cells are useful, they can also be tricky to use. Since they grow so well in culture and are immortal, they can easily contaminate non-HeLa cell cultures. Contamination of other cells by HeLa cells is a widely acknowledged problem and it has led to some research being invalidated once the contamination was discovered.

(8) HeLa cells were the first cells to be successfully cultured. George Gey freely donated these cells and the information needed to culture the cells to any scientist who asked for them. He saw the benefits for medical research and for humanity. Though they have been extremely useful there is a controversy around the use of HeLa cells. Henrietta Lacks never gave permission to have her cells collected or used in this way. In 1951, it wasn’t customary to acquire permission from patients to harvest their cells. Even now harvested cells or body parts obtained from surgical procedures remain the property of the physician or hospital. The case of HeLa cells has raised a lot of ethical issues. Many individuals and corporations have become rich from creating different strains of HeLa cells and selling them, while the descendants of Henrietta Lacks are not provided with any financial compensation.
Though HeLa cells are useful, they can also be tricky to use. Since they grow so well in culture and are immortal, they can easily contaminate non-HeLa cell cultures. Contamination of other cells by HeLa cells is a widely acknowledged problem and it has led to some research being invalidated once the contamination was discovered.

HeLa cells were the first cells to be successfully cultured. George Gey freely donated these cells and the information needed to culture the cells to any scientist who asked for them. He saw the benefits for medical research and for humanity. Though they have been extremely useful there is a controversy around the use of HeLa cells. Henrietta Lacks never gave permission to have her cells collected or used in this way. In 1951, it wasn’t customary to acquire permission from patients to harvest their cells. Even now harvested cells or body parts obtained from surgical procedures remain the property of the physician or hospital. The case of HeLa cells has raised a lot of ethical issues. Many individuals and corporations have become rich from creating different strains of HeLa cells and selling them, while the descendants of Henrietta Lacks are not provided with any financial compensation.

Article Questions

1) What was George Gey trying to accomplish with his research?

2) What makes HeLa cells different from other cells?

3) What is the Hayflick limit?

4) What happens when a cell reaches senescence?

5) What are telomeres and what happens to them during DNA replication?

6) Why does the presence of telomerase allow a cell to divide beyond the Hayflick limit?

7) Name three things that have been developed or tested using HeLa cells?

8) What is one concern about using HeLa cells in research labs?

9) What is one ethical problem with how HeLa cells have been obtained and used over the last few decades?
Though HeLa cells are useful, they can also be tricky to use. Since they grow so well in culture and are immortal, they can easily contaminate non-HeLa cell cultures. Contamination of other cells by HeLa cells is a widely acknowledged problem and it has led to some research being invalidated once the contamination was discovered.

HeLa cells were the first cells to be successfully cultured. George Gey freely donated these cells and the information needed to culture the cells to any scientist who asked for them. He saw the benefits for medical research and for humanity. Though they have been extremely useful there is a controversy around the use of HeLa cells. Henrietta Lacks never gave permission to have her cells collected or used in this way. In 1951, it wasn’t customary to acquire permission from patients to harvest their cells. Even now harvested cells or body parts obtained from surgical procedures remain the property of the physician or hospital. The case of HeLa cells has raised a lot of ethical issues. Many individuals and corporations have become rich from creating different strains of HeLa cells and selling them, while the descendants of Henrietta Lacks are not provided with any financial compensation.
IMMORTAL CANCER CELLS

(7) Though HeLa cells are useful, they can also be tricky to use. Since they grow so well in culture and are immortal, they can easily contaminate non-HeLa cell cultures. Contamination of other cells by HeLa cells is a widely acknowledged problem and it has led to some research being invalidated once the contamination was discovered.

(8) HeLa cells were the first cells to be successfully cultured. George Gey freely donated these cells and the information needed to culture the cells to any scientist who asked for them. He saw the benefits for medical research and for humanity. Though they have been extremely useful there is a controversy around the use of HeLa cells. Henrietta Lacks never gave permission to have her cells collected or used in this way. In 1951, it wasn’t customary to acquire permission from patients to harvest their cells. Even now harvested cells or body parts obtained from surgical procedures remain the property of the physician or hospital. The case of HeLa cells has raised a lot of ethical issues. Many individuals and corporations have become rich from creating different strains of HeLa cells and selling them, while the descendants of Henrietta Lacks are not provided with any financial compensation.

Article Questions

1) What was George Gey trying to accomplish with his research?
   He was trying to grow cells in culture that would survive for more than just several days.(2)

2) What makes HeLa cells different from other cells?
   They can continue to divide indefinitely (making them immortal cells).(2)

3) What is the Hayflick limit?
   It is the limit in which cells can divide before they stop dividing and die. It is anywhere from around 40-70 cell divisions.(3)

4) What happens when a cell reaches senescence?
   It stops dividing and reaches cellular “old age” and eventually dies.(4)

5) What are telomeres and what happens to them during DNA replication?
   Telomerese are sections of DNA found at either ends of DNA strands. They don’t code for any genetic traits. When DNA replicates, the telomeres get shorter.(4)

6) Why does the presence of telomerase allow a cell to divide beyond the Hayflick limit?
   Telomerase adds DNA to telomeres which prevents them from shortening between cell divisions. This allows cells to divide longer and go beyond the Hayflick limit.(5)

7) Name three things that have been developed or tested using HeLa cells?
   Various answers: polio vaccine, treatments for cancers and AIDS, cosmetics, cleaners, radiation, toxins etc.(6)

8) What is one concern about using HeLa cells in research labs?
   HeLa cells can easily contaminate other cell samples making the research invalid.(7)

9) What is one ethical problem with how HeLa cells have been obtained and used over the last few decades?
   HeLa cells were obtained without Henrietta Lacks’ permission and are now sold for profit by various companies while none of the money goes to Henrietta Lacks’ family.(8)
More articles can be found in the COMPLETE BUNDLE of Articles for 35% OFF.

This bundle drops the price of each article down from $2.75 to $1.75.

Article #1: Why We Love and Hate Spicy Foods (Gr.7-12)
Article #2: Tears Tears Everywhere (Gr.7-12)
Article #3: Beyond the Appendix: Vestigial Structures (Gr.8-12)
Article #4: Dung Beetles: Where Did All the Poo Go? (Gr.7-12)
Article #5: Cancer Sniffing Dogs (Gr.7-12)
Article #6: Hyponatremia: Death by Water (Gr.9-12)
Article #7: Body Fat: The Good, The Bad and the Ugly Truth (Gr.8-12)
Article #8: Photosynthetic Animals (Gr.8-12)
Article #9: Diamonds, the Truth behind the Bling (Gr.8-12)
Article #10: Facebook Blues: Is Facebook Making you Unhappy (Gr.7-12)
Article #11: The Making of Human Hermaphrodites (Gr.9-12)
Article #12: Are Bed Bugs Keeping You Awake? (Gr.8-12)
Article #13: Miraculous Medical Maggots (Gr.7-12)
Article #14: How Anabolic Steroids Work (Gr.8-12)
Article #15: The Science of Sleep (Gr.7-12)
Article #16: Parasites Create Zombie Snails (Gr.7-12)
Article #17: Breathing and Peeing in Space (Gr.7-12)
Article #18: Is it Ironman? No, it’s Alloyman! (Gr.8-12)
Article #19: Immortal Cancer Cells (Gr.9-12)
Article #20: Endangered Soil (Gr.7-12)
Article #21: Sex Changing Fish (Gr.7-12)
Article #22: Fecal Transplants (Gr.7-12)
Article #23: Human Cyborgs vs. Bionic Humans (Gr.7-12)
Article #24: Black Holes Explained (Gr.9-12)
Article #25: The Science and Evolution of Skin Color (Gr.8-12)
Article #26: Tanning, UV Radiation and Skin Cancer (Gr.7-12)
Article #27: Lobotomies: Who Needs All that Brain? (Gr.7-12)
Article #28: The Importance of Bees (Gr.7-12)
Article #29: Antibiotics: Penicillin and Beyond (Gr.7-12)
Article #30: Addicted to Sugar (Gr.7-12)